@Evinceo PCJ? And (lack of) reproducibility really would be a problem for Go, the LLM would need to expose all its random seeds and not have any run-to-run varying algorithms within it. This is not a joke or snark, the bits have to match on recompilation.
I was wasn’t expecting a serious treatment of this very silly idea, my mistake. I submit that it would cause enough difficult to diagnose bugs while just messing with it that you would never get into ‘but are the builds reproducible’ territory.
@Evinceo there’s code generation, and there’s optimization decisions. Optimization problems often have the property that their correctness is easily checked, but choosing the best one is hard. Register allocation is the easy-to-understand example – if modeled as graph coloring, an incorrectly colored graph is trivial to detect.
This reads like a PCJ comment, bravo. I’ll do one for rust:
If an LLM cannot insult the user for having the tremerity to try and compile code, it’s not compatible for use with the Rust compiler.
@Evinceo PCJ? And (lack of) reproducibility really would be a problem for Go, the LLM would need to expose all its random seeds and not have any run-to-run varying algorithms within it. This is not a joke or snark, the bits have to match on recompilation.
PCJ -> Programming Circlejerk.
I was wasn’t expecting a serious treatment of this very silly idea, my mistake. I submit that it would cause enough difficult to diagnose bugs while just messing with it that you would never get into ‘but are the builds reproducible’ territory.
@Evinceo there’s code generation, and there’s optimization decisions. Optimization problems often have the property that their correctness is easily checked, but choosing the best one is hard. Register allocation is the easy-to-understand example – if modeled as graph coloring, an incorrectly colored graph is trivial to detect.
So, sadly, not silly enough.