Gork@lemm.ee to Science Memes@mander.xyzEnglish · 8 months agoCrazy how nature be like thatfiles.catbox.moeimagemessage-square34fedilinkarrow-up1271arrow-down115
arrow-up1256arrow-down1imageCrazy how nature be like thatfiles.catbox.moeGork@lemm.ee to Science Memes@mander.xyzEnglish · 8 months agomessage-square34fedilink
minus-squarelugal@sopuli.xyzlinkfedilinkEnglisharrow-up63arrow-down1·8 months agoIt’s not mysterious that they meet somewhere. These are linear functions so they can’t help but meet at exactly one point (or zero if they were parallel)
minus-squareHexagon@feddit.itlinkfedilinkEnglisharrow-up26arrow-down1·8 months agoIf they were parallel they wouldn’t meet. See °C and K
minus-squarelugal@sopuli.xyzlinkfedilinkEnglisharrow-up30·8 months agoI meant “meet at zero points” so they don’t meet. Maybe my wording wasn’t perfectly clear
minus-squareHexagon@feddit.itlinkfedilinkEnglisharrow-up7·8 months agoAh right, for some reason I couldn’t read it properly. My bad
minus-squareramenshaman@lemmy.worldlinkfedilinkEnglisharrow-up2·8 months agoOr °F and °R. Not that anyone really uses R.
minus-squareaffiliate@lemmy.worldlinkfedilinkEnglisharrow-up2arrow-down1·8 months agoeven parallel lines will meet at a point if you’re working in projective space
minus-squareMBM@lemmings.worldlinkfedilinkEnglisharrow-up17·8 months agoThey could have met below absolute zero!
minus-squarelugal@sopuli.xyzlinkfedilinkEnglisharrow-up6·8 months ago zero! !unexpectedfactorial@sopuli.xyz
minus-squarelugal@sopuli.xyzlinkfedilinkEnglisharrow-up2·8 months agoNow we have to determine what the absolute one is. The number one temperature? Maybe “room temperature”?
minus-squareJackGreenEarth@lemm.eelinkfedilinkEnglisharrow-up2·8 months agoWhat do you mean absolute? Is 1? the absolute value of 1. I thought |1| would be.
minus-squarelugal@sopuli.xyzlinkfedilinkEnglisharrow-up2·8 months agoYes but which unit? “absolute zero point” doesn’t need a unit since zero is zero (and degree isn’t a unit in this sense). But what is |1|? 1K? The highest possible temperature maybe as in “on a scale from 0 to 1”
minus-squarenyakojiru@lemmy.dbzer0.comlinkfedilinkEnglisharrow-up1·8 months agoDude I hope that what you said does not have sense at all.
It’s not mysterious that they meet somewhere. These are linear functions so they can’t help but meet at exactly one point (or zero if they were parallel)
If they were parallel they wouldn’t meet. See °C and K
I meant “meet at zero points” so they don’t meet. Maybe my wording wasn’t perfectly clear
Ah right, for some reason I couldn’t read it properly. My bad
Or °F and °R. Not that anyone really uses R.
even parallel lines will meet at a point if you’re working in projective space
They could have met below absolute zero!
!unexpectedfactorial@sopuli.xyz
Is 0! 1?
Yup
Now we have to determine what the absolute one is. The number one temperature? Maybe “room temperature”?
What do you mean absolute? Is 1? the absolute value of 1. I thought |1| would be.
Yes but which unit? “absolute zero point” doesn’t need a unit since zero is zero (and degree isn’t a unit in this sense).
But what is |1|? 1K? The highest possible temperature maybe as in “on a scale from 0 to 1”
Dude I hope that what you said does not have sense at all.
Elaborate